

MAT4BAT

Advanced materials for batteries

European workshop on nanotechnologies & advanced materials for batteries

Context: Energy storage for xEV

- Battery storage for electrified vehicles
 - Boost with Li-ion batteries introduction
 - Still limiting parameters for large scale commercialization
 - Lifetime
 - Driving range
 - Quality & safety
 - Cost
 - Affordable economical business plan for OEMs strongly depending on storage
- Understanding and control of battery ageing mechanisms is the key
 - Extending battery lifetime
 - "Smart" BMS and charging modalities implementation
- Li-ion cell is the core component
 - Design and process including materials & electrodes
 - Highlighting of ageing mechanisms
 - Advanced materials integration could help increase energy density and lifetime

D. Andre et al., Future generations of cathode materials: an automotive industry perspective, *J. Mater. Chem. A.* 3 (2015) 6709–6732

Objectives

- Assessing performance, lifetime and safety of batteries
 - Adress all critical ageing mechanisms associated to NMC/G technology (SoA commercial cells GEN#0)
 - Implement advanced testing tools and procedures
 - Define critical charging modalities for a battery system during practical use
- GEN#1 GEN#2 GEN#3 **ENERGY** 150 Wh/ka 200 Wh/ka 250 Wh/kg DOD 80 % 80 % 80 % LIFETIME 2000 cycles 3000 cycles 4000 cycles Standard charging LIFETIME 1500 cycles 2250 cycles 3000 cycles Fast charging SAFETY Qualitative information (ex. Nail test, crush test, overcharge
- 2. Development of advanced materials for safe and ageing resistant batteries
 - Implement 3 new generations of Li-ion cells from liquid, to gel and then to solid-state electrolyte
 - Manufacture and test large cells (> 10 Ah) in order to validate best technologies against quantified objectives

(-) material	Synthetic graphite				
(-) formulation	Graphite-graphene-NTC blends				
(+) material	NMC	Li-rich	Li-rich		
(+) formulation) formulation Water-based formulation		Optimized formulation		
Separator	Microporous separator	PVdF-HFP membrane	Solid polymer		
Electrolyte	Advanced liquid	Optimized gel	electrolyte		
Packaging	Packaging Standard soft		« Smart »		

according to standard protocols)

Mat4Bat consortium & information

Note: CEGASA participation to MAT4BAT project was ended in March, 31st 2015

Grant agreement # 608931

Time:

Duration: 42 months

Starting date: 01/09/2013

End date: 28/02/2017

Budget:

Total cost: 11 443 522 €

EU contribution: 8 191 959 €

Project website:

http://mat4bat.eu/

Implementation

MAT4BAT battery assessment program (#1)

Material & process innovation

Advanced cathode materials

- Search for new cathode materials enabling higher energy density
- Interest for Li-rich materials Li_{1+x}M_{1-x}O₂
 (0<x<1/3; M = Mn, Ni,...)
 - High specific capacity > 250mAh/g(vs. 180mAh/g for NMC)
 - High energy applications > 250-300Wh/kg
 - Low cost materials

Main issues to be solved:

- Structural mechanism understanding
- First high irreversible specific capacity
- Gas generation issue during 1st cycles
- Voltage decay upon cycling
- Thermal stability & power perfs improvement

Advanced cathode materials

- First screening of synthesis method and conditions
- Optimization of Li-rich material composition (doping)
 - DOE for process optimisation (co-precipitation)
 - DOE composition optimization
- Attempts to create graphene coatings

- Selected material was upscaled to 10 kg for prototypes manufacturing
 - Stable and reproducible performances compared to lab-scale batches

Electrode manufacturing

- Technological issues associated to electrodes
 - Environmental, health and costs concerns associated with the use of N-methyl pyrrolidone (NMP) → Water-based slurry manufacturing
 - High sensitivity of lithium metal oxides (NMC, Li-rich) towards water
 - → pH control to avoid alkaline slurries / aluminium surface corrosion
 - Binder optimization
 - → SOLVAY PVdF-based latex implementation
 - Scale-up development
 - → Formulation development, stability control and coating ability assessment, mechanical properties
- Process development in Mat4Bat
 - ~ 1kg slurry batches
 - Slurry pH adjustment and monitoring
 - Electrodes successfully coated using comma-bar reverse-roll coating or slot die coating (several tens of meter-long electrodes)

Gen#1 - NMC - slurry mixing

Gen#1 - NMC - final cathode roll

Gen#2 - Li-rich - wet coating

Final slurry

Gen#2 - Li-rich - calandering

Prototype manufacturing

 Beneficial use of battery manufacturing platforms (Cegasa, CEA, Cidetec, KIT) to assess material development at cell level

		Material development	Lab-scale cells	Component up- scaling	Large cells manufacturing	Ageing evaluation
(GEN#1		lacksquare	lacksquare		

GEN#1: High capacity NMC / graphite cells, SoA technology, water-based electrode process

17 Ah nominal capacity ~150 Wh/kg

- Prismatic soft packaging, 140 mm x 230 mm
- Stack cell

Cell stacking-winding unit

A. Kvasha, et al., Development of Large Format NMC-Graphite Lithium Ion Pouch Cell with Aqueous Processed Electrodes, *ECS Trans.* 73 (2016) 325–330

00	0130	Wille	ovs at	15 (
90	Ties.	0.70				
85		A Park				+
	7,4				0 00	
	1		10		0 - 80	1
(C)			1	*		
0 100			10 -	90		
55 -						
50	- 1					
	20	- 100				
35	00 15	00 20	00 25	00	3000	3500
	000 995 990 885 775 665 600 0 - 100 555 550 45 44 45 41 42 42 43 43 43 45	000 995 990 885 880 775 770 655 660 0 - 100 45 45 40 40 41 41 40 40 40 41 41 41 41 41 41 41 41 41 41 41 41 41	000 95 99 90 88 88 775 66 60 0 - 100 55 55 60 45 44 42 42 43 43 53	000 95 90 88 88 775 70 65 60 0 - 100 10 - 65 55 50 45 44 40 20 - 100 35	000 95 99 90 88 88 80 77 70 65 60 0 - 100 10 - 90 45 44 44 40 42 43 43 43 43 44 45 46 47 48 48 48 48 48 48 48 48 48 48	95 90 85 88 80 75 70 65 60 0 - 100 10 - 90 10 - 90 45 40 41 42 40 41 42 43 43 43 43 44 45 46 47 47 47 47 47 47 47 47 47 47

	GEN#1	
ENERGY	150 Wh/kg	✓ 157Wh/kg @ 1C/1C, 25° C
DOD	80 %	
LIFETIME Standard charging	2000 cycles	2000 cycles @ 1C/1C, 45° C, 10-90% 3000 cycles @ 1C/1C, 25° C, 10-90%
LIFETIME Fast charging	1500 cycles	1500 cycles @ 2C/1C, 45° C, 10-90% certainly > @ 25° C but not tested ② 3C → < 500 cycles both @ 25° C and 45° C

Prototype manufacturing

 Beneficial use of battery manufacturing platforms (Cegasa, CEA, Cidetec, KIT) to assess material development at cell level

	Material development	Lab-scale cells	Component up- scaling	Large cells manufacturing	Ageing evaluation
GEN#1	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$
GEN#2A	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$	To be continued
GEN#2B	$\overline{\checkmark}$	$\overline{\checkmark}$	To be continued		
GEN#3	$\overline{\checkmark}$	To be continued			

GEN#2A: High capacity Li-rich / graphite cells, water-based electrode process

12 Ah nominal capacity190 Wh/kg after cell formation

Prismatic 90 mm x 140 mm, soft packaging

Wound cell + internal plastic core for mechanical stability

Tools and methods for ageing evaluation

- Variety of tools for ageing mechanisms understanding
 - Ante / operando / post-mortem analysis
 - Advanced implementated methods in Mat4Bat: GD-OES spectroscopy, electrochemical analysis, sensors...

T. Waldmann et al., Review—Post-Mortem Analysis of Aged Lithium-Ion Batteries: Disassembly Methodology and Physico-Chemical Analysis Techniques, *J. Electrochem. Soc.* 163 (2016) A2149–A2164

- Main ageing mechanisms at the anode side
 - SEI growth
 - Li plating
 - Local Li deposition

Strong interplay of operating conditions [T, C-rate, upper cutoff voltage] to avoid lithium deposition

- Semi-empirical models of ageing data
 - Cell resistance evolution
 - Capacity loss

20

Impacts

Commercial exploitation / Technology transfer

- Advanced materials & process know-how: PVdF latexes, carbon materials (graphite, addititives), electrolytes, Li-rich material
- Predictive ageing models → BMS development

Identified market: cell manufacturers, modules and packs integrators, OEMs

General advancement of knowledge

- New methods for material characterization and battery testing
- Deep understanding and verification of ageing and degradation processes in electrical vehicle batteries
- Networking with actors of battery field, reinforced expertise

Extension to other fields of battery storage is possible

→ Battery second life, implementation at module and pack levels, stationnary storage, other battery technologies (Li-ion and beyond)

Europe-based industry benefit

- New advanced materials for improved Li-ion cell manufacturing
- Options for the use of environmentally friendly and sustainable materials

Conclusion and recommendations

- Development of advanced materials for battery storage is a long process...
 - Maturation time is needed for low TRL components
 - Li-rich cathode material: very promising, but short lifetime, fundamental research effort needed
 - Electrolytes: to be developed according to clear KPI (final application, T, lifetime, cost...), battery cell design and process to be adjusted
- Materials of interest could only be further developed with industrial perspective
 - Collaborative projects, workshops... to share roadmaps
 - Strong support of battery cell manufacturers is mandatory
- Modeling and simulation tools to rapidly bridge the gap between scales
 - Components: Materials → Electrodes → Cells → Modules → Packs
 - Process: Lab → Pilot → Industrial production

MAT4BAT

Advanced materials for batteries

Thank you for your attention