European Photovoltaic Cluster General Assembly

[Title of Presentation]

[Jean Patrice Rakotoniana] CEA

AGATHA Project

25th - 26th May 2016

University of Barcelona - Faculty of Physics Av. Diagonal, 647 08028 Barcelona

AGATHA project

- Advanced Gratting for Thin films solar cell: AGATHA
- Funded under FP7-Energy India collaborative call
- Start 10th of Sept. 2010 end 31st of Aug. 2016
- 3 years delays due to EC/DST coordination agreement (Kick-off meeting Sept. 2013)
- http://agatha-project.eu/
- SUMMARY
- \blacktriangleright AGATHA project aims at reducing absorber thicknesses in different thin-film technologies: a-Si:H (decrease of Staebler Wronski effect), μ C-Si:H (reducing deposition time) and CIGS (reducing In consumption) while maintaining performances (particularly J_{SC}) by using **textured glass substrates** for light trapping in solar cells
- Cooperation between India (glass substrates texturation by embossing) and Europe (double texturation + thin film solar cells fabrication)

AGATHA project

Objectives

Technology	a-Si:H	μc-Si	CIGS
Thickness reduction	300 -> 150 nm	1600 -> 1000 nm	2500 -> 600 nm
Quantitative objective	Jsc = 17 mA/cm2	Jsc = 24 mA/cm2	Jsc = 30 mA/cm2
Advanced gratting	Embossed glass	Embossed glass	Embossed glass
	1000 nm + Chemically	900 nm 2000 nm + Chemically	900 nm 2000 nm + Mo nanoparticles
	etched TCO	etched TCO	

TRL 2/3 : beginning of project Concept + solar cells @ lab. scale

TRL 4 : end of the project mini-module (7x7 cm2) fabricated

Main results and bottelnecks

 Difficulty with Indian consortium: no embossed substrates provided during the whole project

⇒ own substrates fabrication in European consortium (additional work and delays)

Main results obtained so far

- Fabrication of periodic textured glass substrates @ CEA
- Deposition methods for ultrathin CIGS solar cells @CEA
- Fabrication of random textured glass substrates @TUD

Bottlenecks identified so far

- Big (300 nm) Mo nanoparticles deposition (@MD) no interest (simulation results)
- Ultrathin CIGS deposition on textured substrates (presence of shortcuts)
- Thin film silicon: better results with flat substrates + chemical etching of front TCO

Conclusion

- Scientific contribution: 2 papers + 3 conferences
- 3 patents deposited @ CEA for substrates fabrication
- Conclusion
 - \circ 3 years project start delayed -> some of research axes are no relevant (thickness decrease for a-Si:H and μ c-Si:H: industry is now only focusing on multijunction solar cells) -> objectives have been changed to higher efficiencies with constant thickness
 - CIGS with reduced thickness still hot topic

Future works

- Permitted to European RTO to work on glass texturation
 - Useful for other applications (antireflecting coating, stealth, ...)
 - Patents have been deposited
- Results have to be confirmed (few work on solar cells have been done due to time spent on glass texturation
- New substrates and methods to be used in future H2020 project ⇒ texturation methods at pilot scale necessary

European Photovoltaic Cluster General Assembly

Thank you for your attention

[Jean Patrice Rakotoniaina] CEA

Agatha project

