

STARCELL

Advanced strategies for substitution of critical raw materials in photovoltaics (H2020-NMBP-03-2016-720907)

Edgardo Saucedo

Solar Energy Materials and System Group (SEMS) IREC, Catalonia Institute for Energy Research, Barcelona, Spain.

e-mail: esaucedo@irec.cat

OUTLINE

1. INTRODUCTION

- 1.1. Critical raw materials in PV
- 1.2. Advanced solutions: beyond the state-of-the-art

2. STARCELL Description

- 2.1. Main Characteristics and Objectives
- 2.2. Consortium
- 2.3. Strategies: short and long term vision of STARCELL

3. STARCELL structure

- 3.1. Workpackage structure
- 3.1. Management structure
- 3.3. Expected impact of STARCELL

4. CONCLUSIONS

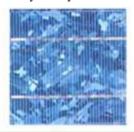
ACKNOWLEDGEMENTS

1.1. Critical raw materials in PV

Classification of available PV

technologies

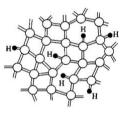
Rigid (Si-wafer)


Cut out of blocks (ingots)

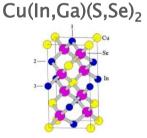
Technology mature, long lifetimes

Mono-crystalline

Poly-crystalline


Thin Film PV

Wafer-based Si


Deposition of thin films, choice of substrate

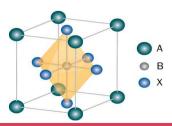
High cost reduction potential

Amorphous Si

CdTe

Low energy payback times

Promising, but still less mature technologies


New materials and concept

Efficiency or stability main challenges

OPV/DSSC/QD

Perovskites

1.1. Critical raw materials in PV

Raw materials Main producers (2010, 2011, 2012)		Main sources of imports into the EU (mainly 2012)	Substitutability index*	End-of-life recycling input rate**	
Gallium ⁵	China 69 % (refined)	USA 49 %			
	Germany 10 % (refined)	China 39 %	0.60	0 %	
	Kazakhstan 6 % (refined)	Hong Kong 8 %			
Indium	China 58 %	China 24 % ↓		0 %	
	Japan 10 %	Hong Kong 19 % ↑	0.82		
	Korea 10 %	Canada 13 %	0.02		
	Canada 10 %	Japan 11 %			
Silicon metal (Silicium)	China 56 %	Norway 38 %		0%	
	Brazil 11 %	Brazil 24 %			
	USA 8%; Norway 8 %	China 8 %	0.81		
	France 6 %	Russia 7 %			

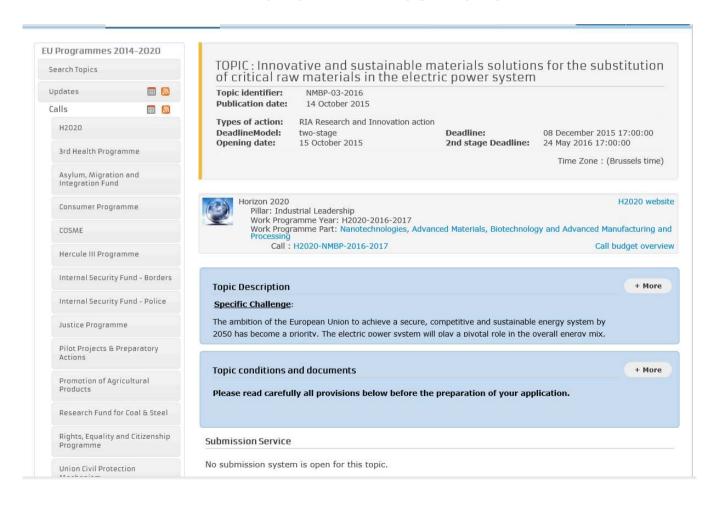
- In, Ga and Silicon Metal are identified by the EC as critical raw materials with high difficulty in substituting these materials:
 - ❖ In and Ga are used in commercial Cu(In,Ga)Se₂ thin film PV modules:
 - o In is mainly used in the flat screen industry
 - o Ga is mainly used in lighting applications
 - Silicon metal is used in commercial crystalline and microcrystalline Si PV modules
 - o Si is mainly used in the aluminium casting, ferrosilicon and microelectronic

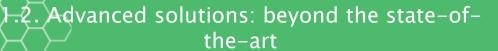
1.1. Critical raw materials in PV

The STARCELL

Table 7. Estimated use of CRM and tellurium for the three main PV technologies in the market based on meeting the entire past (2014) and forecast (2019 and 2030) PV market demands.

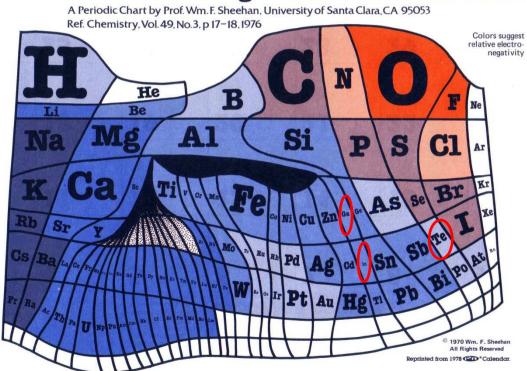
PV technology	CRM usage	CRM usage to cover [entire PV market demand] (and percentage of existing/forecast global supply of CRM)					
		2014	2019		2030		
	[tonnes per GW]	[40GW]	Low Scenario [121 GW]	High Scenario [158 GW]	[300GW]		
Crystalline	6,000t	240,000t	726t	948t	1,800,00t		
Silicon [2]	Silicon metal	(12.7%)	(27.9%)	(36.4%)	(NA)		
CdTe	93t	3,720t	11,300t	14,700t	27,900t		
	Tellurium*	(501%)	(900%)	(1170%)	(1300%)		
CIGS [46]	7.2t	288t	871t	1,137t	2,160t		
	Gallium	(100%)	(193%)	(252%)	(324%)		
	14.4t	1008t	3,049t	3,980t	7,557t		
	Indium	(74%)	(160%)	(209%)	(288%)		
(*) Tellurium is not currently included in the list of CRMs, although availability will likely limit the growth of CdTe technology							


- In a low scenario for 2019:
 - o 28% of produced silicon metal will be required for PV, or
 - o 193% of produced In and 160% of produced Ga, or
 - o 501% of produced Te



1.1. Critical raw materials in PV

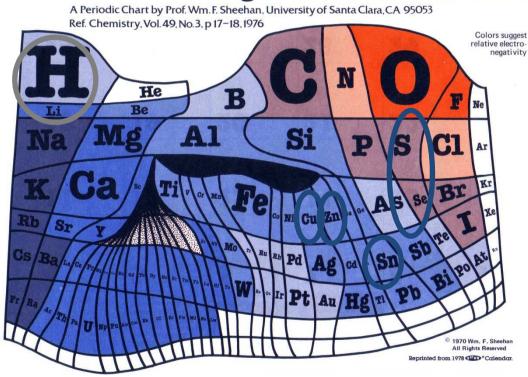
EC call for substitution of critical raw materials in key technologies: H2020-NMBP-03-2016



We need new sustainable solutions based on earth crust abundant elements

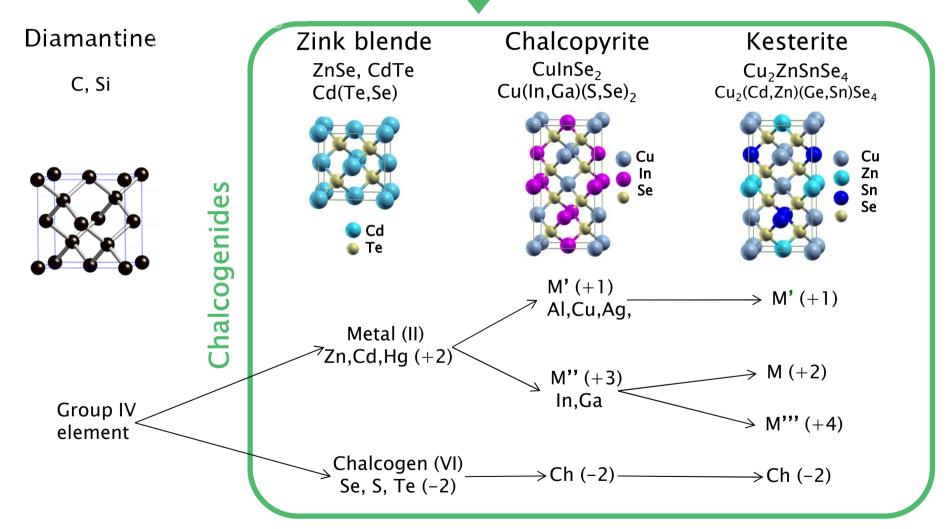
The Elements According to Relative Abundance

 In, Ga and silicon metal are considered scarce materials that can have concerns for the future development of thin films PV technologies (additionally Cd has the toxicity associated problems)


WE NEED TO EXPLORE MATERIALS BASED ON EARTH ABUNDANT ELEMENTS

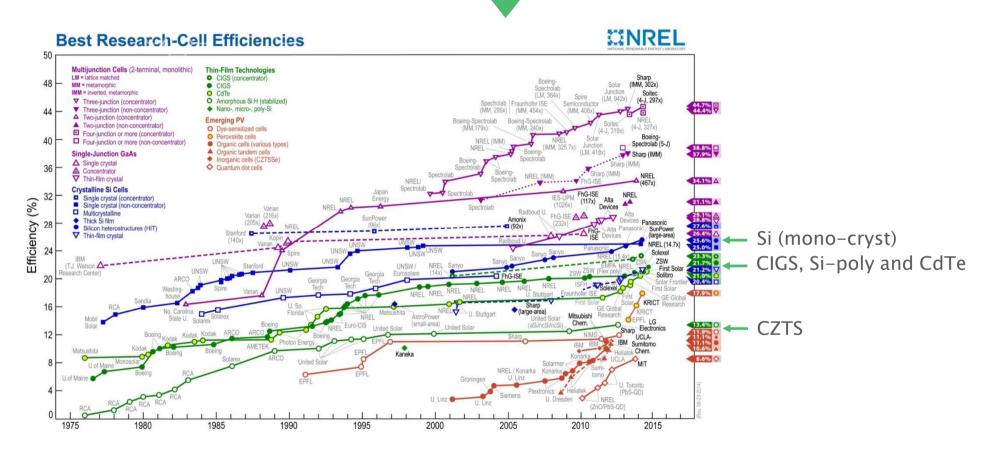
2. Advanced solutions: beyond the state-ofthe-art

The Elements According to Relative Abundance


AFTER SEVERAL YEARS OF RESEARCH

 Cu-chalcogenide based absorbers: where kesterites (Cu₂ZnSn(S,Se)₄) are at the forefront on new inorganic thin film PVs

.2. Advanced solutions: beyond the state-ofthe-art



Similar structure -> similar opto-electronic properties

Compatible technologies

.2. Advanced solutions: beyond the state-ofthe-art

- Conversion efficiency at laboratory scale still lower than conventional PV technologies
- Relatively new technology, lack of maturity
- Requires a lot of efforts from the scientific community to achieve same maturity level than CIGS and CdTe

OUTLINE

1. INTRODUCTION

- 1.1. Critical raw materials in PV
- 1.2. Advanced solutions: beyond the state-of-the-art

2. STARCELL Description

- 2.1. Main Characteristics and Objectives
- 2.2. Consortium
- 2.3. Strategies: short and long term vision of STARCELL

3. STARCELL structure

- 3.1. Workpackage structure
- 3.1. Management structure
- 3.3. Expected impact of STARCELL

4. CONCLUSIONS

ACKNOWLEDGEMENTS

Advanced strategies for substitution of critical raw materials in photovoltaics

Call: NMBP-03-2016: "Innovative and sustainable materials solutions for the substitution of critical raw materials (CRM) in the electric power systems, in particular CRM in materials used in photovoltaic cells". Research and Innovation Action (RIA).

Coordinator: IREC (Dr. Edgardo Saucedo)

Duration: 36 months (01/01/2017–31/12/2019 Budget: 6:218.203 €

www.starcell.eu

STARCELL aims to substitute two critical raw materials (In and Ga) used in conventional thin film photovoltaic (PV) technologies, via the introduction of sustainable kesterite (Cu₂ZnSn(S,Se)₄ - CZTS) semiconductors.

STARCELL MAIN OBJECTIVE:

Eliminate all materials classified as CRM from cost effective thin film PV technologies through development and use of earth abundant kesterite materials from Cu. Zn. Sn. S and Se.

STARCELL TARGET:

Optimise materials, processes and devices to achieve a kesterite solar cell with 18% efficiency (16% at mini-module level) at a cost ≤ 0.30 €/Wp at TRL5.

2. STARCELL description

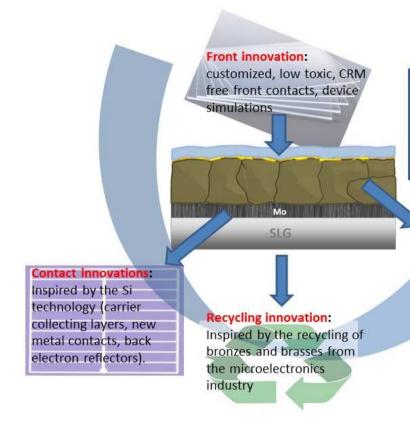
2.1. Main Characteristics and Objectives

- 13 Partners
- **❖** 8 Countries
- 3 Continents
- ❖ 5 Research Institutes
 - 4 Universities
 - 4 Companies
- More than 45 researchers involved

2. STARCELL description
2.2. Consortium

Partner	Logo	Expertise	Main role in STARCELL			
1. IREC (ES)	IREC P	Development of high efficiency CZTSSe absorbers by sequential process.	Coordinator. Absorber, Interfaces, devices.			
2. CEA (FR)	cea	Development of Cd-free buffer layers. Simulation.	Buffer layers, simulation, LCA.			
3. EMPA (SW)	EMPA© Materials Briance & Technology	High efficiency CIGS and CZTSSe devices. Several world records.	Absorber, interfaces, buffer layers, devices.			
4. UU (SE)	UPPSALA	Large expertise in surface characterization at nanoscale level: TEM, EELS, EDX, XPS	Advanced surface characterization.			
5. ICL (UK)	Imperial College London	Worldwide recognized group in modelling of chalcogenide materials.	Material modelling.			
6. HZB (DE)	HZB	Worldwide recognized group in the characterization of CZTSSe solar cells.	Optical/Electrical characterization. Minimodules.			
7. MLU (DE)	AMATONIA POPE TOPOGRAMA TOPOGRAMA	Large experience in CIGS and CZTSSe simulation and characterization.	Device modelling. In-situ characterization.			
8. IMRA (FR)	9MRA	Leading European company in the development of high eff. CZTSSe solar cells	Absorber, interfaces, devices, mini-modules, exploitation.			
9. MIDSUMMER (SE)	midsummer 🚫	Very recognized CIGS modules and PV equipments producer	Mini-modules, homogeneity, exploitation.			
10. WIREC (ES)	With International Management, Ed.	Large experience in materials recycling for microelectronic industry (including Zn, Sn, Cu)	Material supply chain, recycling/reuse, exploitation.			
11. AYESA (ES)	avesa ≫ ===	Leading company in the development of PV solar plants	In field devices testing. Exploitation.			
12. AIST (JP)	AIST	Most recognized Japanese institute in the development of CIGS and CZTSSe solar cells.	Absorber, devices. Benchmarking and certification.			
13. UDuke (US)	Jii Duke	Kesterite world record holder by several years.	Absorber, interfaces. Benchmarking.			

2. STARCELL description 2.2. Consortium



STARCELL: the project where the sun will never set

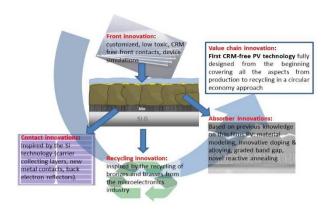
2. STARCELL description 2.2. Consortium

Value chain innovation:

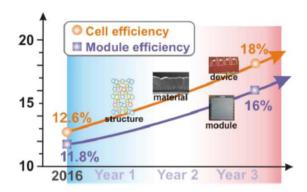
First CRM-free PV technology fully designed from the beginning covering all the aspects from production to recycling in a circular economy approach

Absorber innovations:

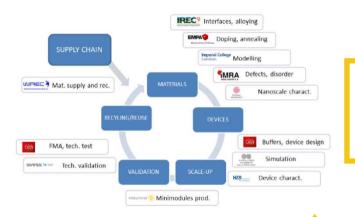
Based on previous knowledge on thin films PV: material modeling, innovative doping & alloying, graded band gap, novel reactive annealing


Our strategy is based in a circular-economy approach:

- Only sustainable materials and processes will be developed
- Design of the complete value chain from the beginning: from materials supply up to recycling aspects


2. STARCELL description

2.3. Strategies: short and long term vision



In a **short term** we are introducing **innovative approaches** to better understand kesterite absorbers and to improve the PV devices properties

In a **mid term** we expect to **increase** the solar cell devices conversion **efficiency** at both, laboratory scale (1 cm²) and minimodule (10x10 cm²)

In a long term to stablish a fully sustainable, cost-efficient, and free of critical raw materials PV technology available for the European Society.

2. STARCELL description

2.3. Strategies: short and long term vision

OUTLINE

1. INTRODUCTION

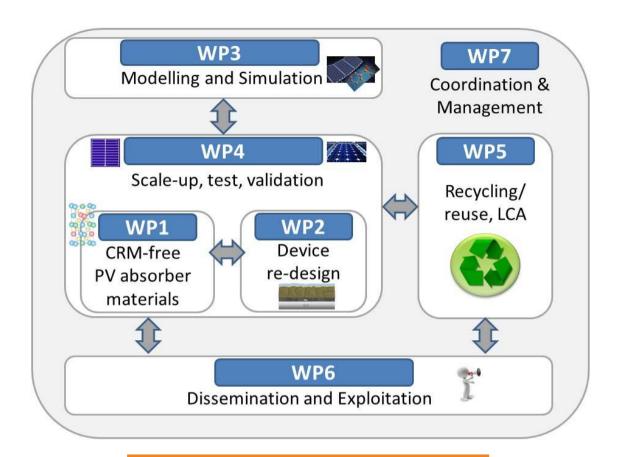
- 1.1. Critical raw materials in PV
- 1.2. Advanced solutions: beyond the state-of-the-art

2. STARCELL Description

- 2.1. Main Characteristics and Objectives
- 2.2. Consortium
- 2.3. Strategies: short and long term vision of STARCELL

3. STARCELL structure

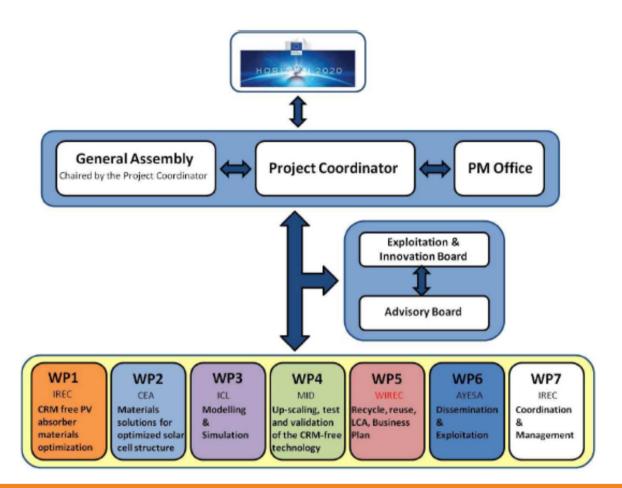
- 3.1. Workpackage structure
- 3.1. Management structure
- 3.3. Expected impact of STARCELL


4. CONCLUSIONS

ACKNOWLEDGEMENTS

3. Structure3.1.Workpackages

7 Workpackages including:


- Absorber
- Devices
- Modelling (materials and devices)
- Scale-up
- Recycling
- Dissemination and

Exploitation

3. Structure3.2.Management

STARCELL is an objective-driven project which comprises three different decision levels:

- 1) **Strategic level**: The General Assembly is formed by one senior representative of each partner. The assembly, assisted by the Exploitation and Innovation Board and the Advisory Board, is responsible for the high level monitoring and control of the project development;
- 2) **Operational level**: The Project Coordinator, assisted by the Project Management Office (PMO), will implement the decisions taken by the General Assembly, being the single contact point with the EC, and in charge of reporting duties.
- 3) **Content level**: Each WP will have a WP leader that will be responsible for monitoring the development and implementation of the technical activity in agreement with the quality requirements fixed by the General Assembly. The WP leaders will directly report to the Project Coordinator.

3. Structure3.3. Impact

Table 11. Summary of the scale-up of the technology.

Phase	Goal	Timing	Investment	Funding sources	Partners involved	
Technology development	Achieve TRL5 (10x10 cm ²), Eff.=16%	2017-2019	€5m	Horizon 2020 project	STARCELL consortium	
Technology scale-up to minimodule size	Achieve TRL6 (30x30 cm²), Eff.=16%	2020-2022	€3m	Private Investment (AYESA), cofounded by H2020/National public funds	STARCELL consortium	
Scale-up to commercial module size & certification (10MW _p).	" 2023-2024 €10m		Private Investment (AYESA)	AYESA		
Medium scale production & commercialization (150MW _p)	Eff.=16% (0.30€/W _p)	2025-2026 673m		AYESA		
Large scale production plant (1GWp)	Eff.=18% (0.20€/W _p)	2027-2030	€275m	Private Investment (AYESA)	AYESA	

Table 12. Financial plan for small production scale.

STARCELL		10MW						
		2026	2027	2028	2029	2030	2031	
PV Manufacturing Capacity (MW)	10	10	10	10	10	10	10	
Total Unitary Cost (k€/MW)	400	400	400	400	400	400	400	
Total Revenues (M€)	8.6	8.6	8.5	8.4	8.4	8.4	8.3	
Total Costs (M€)	5.3	5.3	5.3	5.4	5.4	5.4	5.5	
Depreciation Equipment:	1.43	1.43	1.43	1.43	1.43	1.43	1.43	
Depreciation Building:	0.07	0.07	0.07	0.07	0.07	0.07	0.07	
Capital Costs:	0.55	0.48	0.40	0.33	0.25	0.18	0.10	
Utilities: Labour:		0.16	0.17	0.17	0.18	0.19	0.19	
		0.54	0.55	0.57	0.59	0.60	0.62	
Materials:	2.40	2.47	2.55	2.62	2.70	2.78	2.87	
Maintenance:	0.16	0.16	0.17	0.17	0.18	0.19	0.19	
EBITDA (M€)	4.82	4.74	4.66	4.58	4.50	4.43	4.36	
NPV (M€)	-6.4	-2.1	1.9	5.7	9.2	12.5	15.6	

Medium-scale (150MW): The scale-up of the production facilities to the 150MW scale will require an investment estimated to be €273m. The gross income generated at this stage over a five years period (2027-31) is expected to be €435.3m, with a NPV=€103m (ROI=130%).

In a medium scale production scenario, a technology like the one under development in STARCELL can give revenues of about 435 M€ in 6 years of commercialization.

OUTLINE

1. INTRODUCTION

- 1.1. Critical raw materials in PV
- 1.2. Advanced solutions: beyond the state-of-the-art

2. STARCELL Description

- 2.1. Main Characteristics and Objectives
- 2.2. Consortium
- 2.3. Strategies: short and long term vision of STARCELL

3. STARCELL structure

- 3.1. Workpackage structure
- 3.1. Management structure
- 3.3. Expected impact of STARCELL

4. CONCLUSIONS

ACKNOWLEDGEMENTS

CONCLUSIONS

- All valuable PV technologies are necessary to cover the future demand for clean and sustainable energy
- ❖ For Europe, it will be very difficult to achieve an efficient control in the production of Si-based, CdTe and CIGS production, due to the strong dependence on raw materials from foreign countries
- ❖ Development of technologies based solutions fully free of critical raw materials, as those proposed in STARCELL, is relevant to warrant a sustainable growth of PV in Europe, ensuring energetic independency in the future
- Kesterites is positioned as one of the most interesting CRM free alternatives free of toxic elements, but require for a strong effort involving public and private investments to achieve technological maturity

ACKNOWLEDGEMENTS

EUROPEAN COMMISION H2020 PROGRAMME STARCELL PROJECT (H2020-NMBP-03-2016-720907)

Nanotechnologies and Advanced Materials for Energy Cluster (NAMEC) for the invitation

Thanks for your attention!